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This talk:

@ a two-step general dynamic factor procedure to estimate the common return
and volatility factors from a large panel (a high-dimensional time series) of
stock returns

@ yielding one-step-ahead conditional quantiles (VaRs) and prediction intervals
for returns;

© yielding a detailed analysis (impulse response functions etc.) of the
propagation of market volatility shocks across returns;

@ the approach is non-parametric and model-free;

© comparison with more standard parametric GARCH-type methods.
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Motivation:

@ Typically, parametric Value at Risk measures are built using parametric
estimates of the volatility of returns
Francq and Zakoian, 2010;

@ but parametric multivariate volatility models in high (also moderate)
dimensions run into severe curse of dimensionality problems.
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Motivation:

@ Typically, Values at Risk and prediction intervals are built from parametric
estimates of the volatility of returns
Francq and Zakoian, 2010;

@ but parametric multivariate volatility models in high (also moderate)
dimensions run into severe curse of dimensionality problems;

@ Factor models decompose a high-dimensional time series (typically, in this
context, returns) into a common component driven by a small number of
market (common) shocks and an idiosyncratic component which is only
mildly cross-correlated;

@ but being entirely (unconditional) covariance-based, a factor model for
returns does not tell us anything about volatilities.
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Motivation:

Typically, Value at Risk measures are estimated by fitting some some
parametric volatility models on observed returns
Francq and Zakoian, 2010;

but parametric multivariate volatility models in high (also moderate)
dimensions run into severe curse of dimensionality problems;

Factor models decompose returns into a common, market-driven,
component and an idiosyncratic one, turning the curse of dimensionality

into a blessing;

but being entirely (unconditional) covariance-based, factor models do not
say anything about volatilities;

combining these approaches sounds like a good idea ...
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A very natural way is the one adopted in a variety of “"Factor-GARCH" methods:

Run a Dynamic Factor Model step on the high-dimensional series of returns,
disentangling the common and idiosyncratic components of returns;

extract the low-dimensional shocks driving the common component of
returns;

perform a parametric GARCH-type analysis of those common shocks (no
curse of dimensionality).
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The idea at first sight looks simple and natural. It is based on the postulate

common volatility shock (market volatility shock)
= shock to the volatility of the common components of returns
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This simple and natural idea boils down to defining “market risk" as the risk
associated with the market-driven component of returns (the common
components):

market risk := risk of the market-driven component of returns

This approach is quite common—see, for instance, Fan, Liao, and Shi (2013)
where the “market risk" is defined as the covariance matrix eommon = Cov(X) of
the common component (in a low rank + sparse context).

How reasonable is that idea?
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Volatility of common component of returns
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Volatility of idiosyncratic component of returns
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@ idiosyncratic component volatility has the same magnitude as common
component volatility

@ idiosyncratic component volatility and common component volatility
obviously strongly comove ... hence idiosyncratic component volatility is not
idiosyncratic! market volatility shocks are impacting the level-idiosyncratic
components as much as they do the level-common ones

Not a big surprise: the decomposition between level-common and
level-idiosyncratic indeed is based on the autocovariance structure of levels
only, which carries no information on volatilities.

@ Actually, the empirical evidence of a factor model structure for
log-volatilities is as strong as for the factor model structure of the returns
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Dynamic factor structure of returns
scree-plot of eigenvalues of long-run covariance matrix of returns
(S&P100)
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Dynamic factor structure of log-volatilities
scree-plot of eigenvalues of long-run covariance matrix of log-volatilities
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See Herskovic, Kelly, Lustig, Van Nieuwerburgh (2016) for further evidence.

This strongly suggests considering the two-step approach we now describe.
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References:

© Factor GARCH (among many others)
Diebold and Nerlove (1989), Engle, Ng, Rotschild (1990), Sentana, Calzolari, Fiorentini
(2008) [fitting a parametric GARCH-type model to the common shocks| Trucios, Mazzeu,
Zevallos, Hallin, Hotta, Valls Pereira (2019) [fitting a parametric GARCH-type model to

the common shocks and univariate parametric AR-GARCHs to idiosyncratic components]

@ Common factor in idiosyncratic volatility
Herskovic, Kelly, Lustig, Van Nieuwerburgh (2016) [idiosyncratic volatility exhibits a

strong factor structure]

© Two-step factors
e Barigozzi and Hallin (2016) “Generalized Dynamic Factor Models and Volatilities:
Recovering the Market Volatility Shocks”’, The Econometrics Journal
e Barigozzi and Hallin (2017) “Generalized Dynamic Factor Models and Volatilities:
Estimation and Forecasting”, Journal of Econometrics
e Barigozzi and Hallin (2017) “A Network Analysis of the Volatility of High-Dimensional
Financial Series”, Journal of the Royal Statistical Society - series C
e Barigozzi, Hallin, and Soccorsi (2018) “Identification of Global and Local Shocks in
International Financial Markets via General Dynamic Factor Models”, Journal of Financial
Econometrics
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A two-step GDFM approach

Consider an n x T panel of stock returns (or levels)
Ynt:{\/it“: 1,...”, t:1,...7T}

a finite realization of the stochastic process {Yi|i € N, t € Z}.
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A two-step GDFM approach

Consider an n x T panel of stock returns (or levels)
Yp={Yeli=1,...n, t=1,...,T}
a finite realization of the stochastic process {Yi|i € N, t € Z}.
To capture all interdependencies in Y,, parametric methods are quite helpless:
curse of dimensionality!

If n ~ 100 we need about 10* parameters for linear dependencies only, plus (at
least) another 10% parameters necessary for modelling, e.g., dependencies in the
squares (volatility) ...
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Factor model methods allow for dimension reduction in returns:

Ynt: Xnt + znt
~~~ ~~~

common  idiosyncratic

@ X,: driven by g < n factors, reduced rank spectral density;

@ Z,; has n components which are only weakly cross-correlated.
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Factor model methods allow for dimension reduction in returns:

Ynt: Xnt + znt
~~~ ~~~

common  idiosyncratic

@ X,: driven by g < n factors, reduced rank spectral density;
@ Z,; has n components which are only weakly cross-correlated.

As n — 00, X, and Z,,; are identified by means of adequate (dynamic)
cross-sectional averaging:

blessing of dimensionality!

Therefore, (n, T)-asymptotics are considered throughout.
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@ A ‘“divide and rule" strategy:

—Being reduced rank, the series of common components somehow can be
handled as a low-dimensional series—in particular, the (low-dimensional)
common shocks can be recovered and fundamental representations of
the Xj;'s can be estimated

—Being only mildly cross-correlated, the n-dimensional series of idiosyncratic
components Z;; can be handled, without much loss, as n univariate
(auto-correlated but not cross-correlated) series. In particular, univariate AR
fits and a global VAR fit roughly produce the same residuals

@ The GDFM decomposition (contrary to the static factor model) is a
representation result—not really a statistical mode/
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Let the returns admit the GDFM representation (encompasses all other factor
models considered in the literature)

E[\/lf] - lt + th - Z Z bljkujt k+ Z dllet k

Jj=1 k=0
or
Ynt - E[Ynt] - Xnt + Z,,t - B,,(L)ut + Dn(L)Vnt
—_— —
common idiosyncratic
such that

L1 u; is 2nd-order g-dim white noise, zero mean, with diagonal covariance;
L2 B,(L) is rational and has absolutely summable coefficients;

L3 the g spectral eigenvalues of X, diverge linearly in n (a reduced-rank
spectrum);
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Let the returns admit the GDFM representation (encompasses all other factor
models considered in the literature)

— E[Yie] = Xie + Zie = ZZbukuﬁ k+dev,t K

Jj=1 k=0
or
Yo — E[Ynt] =Xpt +2Zpe = Bn(L)ut + Dn(L)Vnt
—_——  ——
common idiosyncratic
such that

L4 v,; is 2nd-order n-dim white noise, zero mean, with p.d. covariance, and
such that its largest eigenvalue is bounded uniformly in n;

L5 E[vit|vis] =0 for all i and t > s;

L6 D,(L) diagonal, and has absolutely summable coefficients; d;(L) = ¢; *(L)
with ¢;(L) of finite order and ¢;(z) # 0 for |z| < 1, i.e. ¢i(L)Zi = vit;

L7 the largest spectral eigenvalue of Z,; is bounded uniformly in n
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Let the returns admit the GDFM representation (encompasses all other factor
models considered in the literature)

%t — E[\/,t] = ,t + Z;t Zzb’lkuﬂ Kkt Zdlkvlt k

Jj=1 k=0
or
Yo — E[Ynt] =Xpt +2Zpe = Bn(l-)ut + Dn(L)Vnt
—— ——
common idiosyncratic
such that

L8 Cov(uj, vis) =0 for any i,j, t,s;

L9 u; and v,; have finite fourth-order cumulants.
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Let the returns admit the GDFM representation (encompasses all other factor
models considered in the literature)

E[\/lf] - It + th - Zzbukujt k+ Zdlkvlt k

Jj=1 k=0
or
Yor — E[Ynt] =Xt +Zp = Bn(L)ut + Dn(L)Vnt
—_— —
common idiosyncratic
such that

in terms of the observed Yi;'s,

@ the ¢ largest spectral eigenvalues of Y ,; diverge linearly in n;

@ the (g + 1)-th largest spectral eigenvalue of Y, is bounded uniformly in n.
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Alternative representation (Forni, Hallin, Lippi, and Zaffaroni, 2015, 2017)
(In - An(L)) (Ynt - E[Ynt]) = Hnut + (In - An(l-)) Znt
@ A, (L) is a block-diagonal matrix of one-sided finite-order filters, with blocks
of size (g + 1);
e Z :=(l,— A,(L)) Z,, is idiosyncratic;
@ H, is n x g with rank g;

@ e, := H,u; is 2nd-order n-dim white noise, zero mean, with rank g
covariance.

We assume
L10 H/H,/n — 14, as n — oo.

Then, the g largest eigenvalues of the covariance of e,; diverge linearly in n.

A static factor model for (1, — A, (L)) (Yne — E[Yne])-
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To compute volatilities we need:
(i) the innovations of Y}

(ii) a non-linear transformation thereof.
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To compute volatilities we need:

(i) the innovations of Y}

(ii) a non-linear transformation thereof.
Innovations:

(i.a) the components e;; of e, (recall e, :== H,u;) are the innovations of the
common component of returns;

(i.b) the components v;; of v, are the innovations of the idiosyncratic component
of returns;

(i.c) since common and idiosyncratic components are mutually orthogonal (all
leads and lags), let s := ejr + vi.
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To compute volatilities we need:
(i) the innovations of Y}
(ii) a non-linear transformation thereof.

Innovations:

(i.a) the components e;; of e, (recall e, :== H,u;) are the innovations of the
common component of returns;

(i.b) the components v;; of v, are the innovations of the idiosyncratic component
of returns;

(i.c) since common and idiosyncratic components are mutually orthogonal (all
leads and lags), let s := ejr + vi.

As a proxy for log-volatilities, define (Engle and Marcucci, 2006)

hie := log{(sit)*}:
we assume that

VO |s;| > 0 almost surely for all i, t.
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The log-volatilities h; admit a GDFM representation:

It - E[hlt] = Xit + glt - ZZ fl_jkg_jt k+ Zglkl/lt k

j=1 k=0
or
—E[hne]l = xnt +  &nt =Fq(L)et + Gu(L)vpe
~—~ ~—~ —_—— —
common  jdiosyncratic common idiosyncratic
such that

V1 g, is 2nd-order Q-dim white noise, zero mean, with diagonal covariance;
V2 F,(L) is rational and has absolutely summable coefficients;

V3 the Q largest spectral eigenvalues of x,: diverge linearly in n;
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The log-volatilities h;; admit a GDFM representation:

E[hlt] = Xit + glt - ZZ f;jkgjt k+ Zg:kV:t k

Jj=1 k=0
or
- E[hnt] = Xnt *+ £nt = Fn(L)Et + Gn(L)Vnt
~—~ ~— —_— —
common  jdiosyncratic common idiosyncratic
such that

V4 v, is 2nd-order n-dim white noise, zero mean, with p.d. covariance, and
such that its largest eigenvalue is bounded uniformly in n;

V5 E[vi|vis] =0 for all i and t > s;
V6 G,(L) diagonal, and has absolutely summable coefficients;

V7 gi(L) = p; *(L) with p;(L) of finite order and p;(z) # 0 for [z] < 1, i.e.
Pi(L)fit = Vit,
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The log-volatilities h; admit a GDFM representation:

E[hlt] = Xit + flt - ZZ f;JkEJt K+ Zg/kylt k

Jj=1 k=0
or
h,,t — E[hnt] = Xnt + gnt - Fn(L)Et + Gn(L)Vnt
N~~~ ~—~ —— N——
common  idiosyncratic common idiosyncratic
such that

V8 Cov(ejt,vis) =0 for any i,j, t,s;

V9 &, and v, have finite fourth-order cumulants.
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The log-volatilities h;; admit a GDFM representation:

— Elhie] = Xie + &ie = Z Z fijk€Eje—k + Zg:ka k

Jj=1 k=0
or
hnt - E[hnt] = Xnt *+ Ent = Fn(L)Et + GH(L)V’”-‘
~—~ ~—~ —_—— ——
common  jdiosyncratic common idiosyncratic
such that

@ the largest spectral eigenvalue of £, is bounded for any n;

@ the Q largest spectral eigenvalues of h,,; diverge linearly in n;

@ the (Q + 1)-th largest spectral eigenvalue of h,; is bounded uniformly on n.
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Alternative representation (Forni, Hallin, Lippi, and Zaffaroni, 2015, 2017)
(1o = M,(L)) (hpe — E[hne]) = Rper + (In — My(L)) €ne

@ M, (L) a block diagonal matrix of one-sided finite-order filters, with blocks
of size (Q + 1);
o &, = (l,— M,(L)) &, is idiosyncratic;
@ R, is n x @ with rank Q.
We assume (an identification constraint )
V10 R/R,/n— lg as n — cc.

Then, the Q largest eigenvalues of the covariance of R,&,; diverge linearly in n.

A static factor model for (1, — M,(L)) (hne — E[hp]).
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Summary of the model for levels

oo oo
Yie =E[Yiel + e+ Y bjue+vie + Y dicvie—k = Yieje—1 + Sie

k=1 k=1
—— ——
Xir\t—l Zir\r—1

Summary of the model for log-volatilities h;; = log s2

hiy = E[hit] + f,'/o<"5t + Z f,{kl‘ft—k +vi + ZgikVit—k = hit|t71 + wijt

k=1 k=1
————— ————
Xit|t—1 Sitjt—1

Combining the two,

sic = exp(hir)t—1/2) exp(wie /2)sign(sic)

=Sit|t—1
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hence

Yie = Yit\t—l + Si = Yit\t—l + Sit|t—1

The lower and upper prediction bounds with confidence level (1 — «) € (0,1) are

£it\t—1(a) = Yit|t—1 + Sit|t—1
uit\t—l(a) = Yit|t—1 =+ Sit|t—1

where stands for the a-quantile of w;;.
The equal-tails prediction interval with coverage probability (1 — «) is

Iit|t—l(a) = [Lit\t—l(a/2)7 u/t\t—l(a/2)]

Unequal-tails prediction intervals are also possible.
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Estimation

The decomposition
(In = An(L)) (Ynr — E[Yre]) =1 €ne + Z3,,

is a static factor model representation for Y7, := (1, — Ap(L)) (Yne — E[Yne])
Estimation in a nutshell

@ Spectral density matrix of X,; by dynamic PCA from spectral density of Y ;

@ Autocovariances of X,; by inverse Fourier transform;

@ Yule-Walker equations on VARs of dimension (g + 1) to get ;a,,(L);

@ static PCA on (I, — K,,(L))Y,,t to get €,; and 2nt;

@ univariate AR on Z-t to get ¢;(L) and Vjg;

@ estimate the GDFM of F;t = log(&; + Vit)? as before;

g and @ via information criteria on spectral eigenvalues (Hallin and Liska, 2007)
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We add the assumptions:

KL Br = o(/T), i.e. the bandwidth for estimating the spectrum of Y ,;
KV M7 = o(\/T), i.e. the bandwidth for estimating the spectrum of h,;
TL u, is sub-exponential and w/Z,; is sub-exponential for ||w,| = 1;
TV e, is sub-exponential and w,&,; is sub-exponential for ||w,| = 1.

ERG {w;} is ergodic
By TL and TV all common and idiosyncratic components are sub-exponential
P(Juje] > €) < K1 exp(—eK?), j=1...,q
Results can be generalized to sub-Weibull
P(|upt| > €) < Kiexp(—€’Kz), 9>0, j=1,...,q.

For ¥ < 1 we can account for extreme events.
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The estimated model is
/:1 I:Z
Yie—Yi= Z b;kat—k + Z dik Vit
k=0 k=0

Proposition 1. Let p,7 = max(B7/v/T,1/B7t,1/+/n), then (under
Assumptions: see the paper), under n = O(T¢) for some 0 < ¢ < 0o as
n, T — 0o, there exists a g x g diagonal matrix J with entries +1, such that

(a) max; b — Ibi|| = Op(pnr), for all k < ki;
(b) max; ||u; — Jut|| = Op(pnt log T);

(c) max;|dy — dic| = Op(pat log T), for all k < ko;
(d) max; max; |Vie — vit| = Op(pn7 log T).
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Let 5;; := &; + Vi;. For some k1 > 0, define the capped estimated log-volatility as
hie := log(82)I([Si| > ri7) + log K7 1(|8k| < r7)-
Assume that this capping is such that
R k7 > 0 and the set
Tre={te{l,....T} | [Se| <rr.forallie {1,...,n}}

has cardinality | 77| = op(V/T) as T — oo.

Capping is bounding s2 away from zero, robustifying their log-transforms; k7 = 0
works in practice, though.

Simulation-based results show that we can choose k1 < log™® T, with a > 0.
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The estimated model is

ki ks
- T o~ ~
his — hj = iKEt—k T g 8ikVit
k=0 k=0

Proposition 2. Let 7,7 = max(BTMT/\ﬁ7 M7 /+/n), then, under Assumptions
in the paper, and if n = O(T¢) for some finite ¢ > 0 as n, T — oo, there exists a
Q x Q diagonal matrix S with entries £1, s.t.

(a) max; [[fi — Sfil| = Op(ro7 log'™ T), for all k < kj;
(b) max;||&: — Se:| = Op(7nr log® ™™ T);
(c) max; |gik — gik| = Op(Tnt Iog2+a T), for all k < I?;;

(6) s mase 7 vl = Op(ryr ™™ T).
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Prediction

Once we have estimated the model, we can compute
© the one-step-ahead predictions Yjr 17 and 57117 = exp(hjT41)7);

@ the historical innovations fort=1,...,T.

Denote by Wj(1), ..., W1 the order statistic of Wjy, ..., WiT.
Then Wj(147) is the empirical counterpart of g(o; w;).

Empirical versions of prediction limits and intervals are

Liriyr(e) = Yiriyr + S 7

~

Uriyr(a) = Yirpy T + St r

Tiriyr(a) = [EiT+1\T(O‘/2)aZ/A{iT+1\T(O‘/2)

Consistent as soon as the h;;'s are ergodic
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Data
@ n = 90 daily returns of stocks;
@ from 4/1/2000 to 30/9/2013, T = 3456 observations;
@ pseudo-out-of-sample forecasting:

e estimating the model using t =1,...,7;
o 7=(T—-M),...,(T —1) and M = 1948;
e evaluation period 3/1/2006 to 27/9/2013.

@ number of factors for levels g = 3 and for log-volatilities @ = 2;

@ bandwidth B =2 and M+ = 17;

@ capping constant k7 € {0,0.1,0.25,0.5};

@ compute quantiles using (Wir—¢11, ..., Wi ), with £ € {126,252,504, 7};
a € {0.32,0.2,0.1,0.05,0.01}.
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AMZN: Amazon; WAG: Walgreens; XOM: Exxon Mobil;
AlG: America International Group
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BAC: Bank of America; C: City Group; GS: Goldman Sachs;
JPM: JP Morgan Chase
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BA: Boeing; GE: General Electric; AAPL: Apple; MSFT: Microsoft
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Table: Average estimated coverage - GDFM

kT =0
(1-a)
0.68 0.8 0.9 0.95 0.99
£=126 | 0.6709 0.7894 0.8887 0.9400 0.9812
£ =252 | 0.6708 0.7903 0.8902 0.9415 0.9848
{=504 | 0.6711 0.7895 0.8895 0.9412 0.9846
=T 0.7010 0.8142 0.9049 0.9506 0.9881
kT =0.1
(1-a)
0.68 0.8 0.9 0.95 0.99
£=126 | 0.6874 0.7985 0.8931 0.9416 0.9813
¢ =252 | 0.6882 0.7999 0.8940 0.9424 0.9846
£ =0504 | 0.6886 0.7995 0.8929 0.9419 0.9843
=1 0.7187 0.8244 0.9096 0.9523 0.9881
kT = 0.25
1-a)
0.68 0.8 0.9 0.95 0.99
¢=126 | 0.7126 0.8141 0.8997 0.9452 0.9821
¢ =252 | 0.7138 0.8143 0.9009 0.9452 0.9851
¢ =504 | 0.7149 0.8150 0.9002 0.9449 0.9846
=T 0.7430 0.8387 0.9162 0.9551 0.9886
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Table: Average estimated coverage - univariate GARCH(1,1)s

T o

0.68 0.8 0.9 0.95 0.99
¢ =126 | 0.6755 0.7947 0.8933 0.9429 0.9834
¢ =252 | 0.6786 0.7981 0.8968 0.9460 0.9871
¢ =504 | 0.6807 0.7994 0.8983 0.9479 0.9878
=T 0.6920 0.8077 0.9036 0.9510 0.9897
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Testing for identical coverage probability of GDFM and GARCH (McNemar, 1947).

Table: Proportions of rejections in favour of a better GDFM coverage (left-hand
panel), in favour of a better GARCH coverage (right-hand panel). Significance
level §. Capping k1 = 0.25.

better GDFM coverage

better GARCH coverage

a=0.1 0=01 6=005 6=001 |6=01 6=005 0=0.01
¢ =126 0.60 0.54 0.37 0.10 0.08 0.07
£ =252 0.53 0.46 0.29 0.13 0.12 0.09
a=005|0=01 6=005 6=001|6=01 6=0.05 6=0.01
¢=126 0.41 0.28 0.16 0.11 0.08 0.06
¢ =252 0.26 0.20 0.06 0.18 0.12 0.11
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Backtesting (Christoffersen, 1998)
@ Define the hit-sequence: ﬁ,-TH‘T(a) =1(Yir41 € f,-TH‘T(a)).

@ Test of valid nominal coverage (reject means interval not wide enough)
E[H, r+1|r(0‘)] >(1—a) versus Hy;: E[?—[, T+1‘T(Ot)] <(1-a).
© Test of sharp nominal coverage (reject means interval too wide)

o E[H) (@] <(1—a) versus  Hiy: E[HY) , (a)] > (1-a).

© Unconditional Coverage test combining the previous ones.
@ Serial Independence test against binary first-order Markov dependence.

@ Conditional Coverage test, combining Unconditional Coverage and
Independence tests.
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Table: Proportion of rejections when testing for valid nominal coverage (left
panel) and for sharp nominal coverage (right panel). Significance level §. Capping

KT = 0.25.

valid nominal coverage test sharp nominal coverage test
a=0.1 6=01 06=005 6=001]6=01 6=0.05 $=0.01
¢ =126 0.14 0.12 0.09 0.24 0.14 0.03
{ =252 0.16 0.13 0.08 0.31 0.21 0.09
a=005|6d=01 6=005 §=001|6=01 6=005 6=0.01
¢ =126 0.29 0.19 0.13 0.01 0.00 0.00
{ =252 0.30 0.20 0.14 0.06 0.01 0.00

Table: Proportion of rejections when considering the two-sided test. Significance

level 6. Capping k7 = 0.25.

unconditional coverage test
a=0.1 0=01 6=0.05 ¢=0.01
¢ =126 0.27 0.19 0.08
¢ =252 0.34 0.26 0.13
a=005|0=01 6=005 ¢6=0.01
¢ =126 0.19 0.16 0.10
¢ =252 0.21 0.16 0.13
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Table: Proportion of rejections when testing against serial dependence (left

panel) and in the combined problem (right panel). Significance level 6. Capping

kT = 0.25.

independence test conditional coverage test
a=0.1 0=01 6=005 6=001 |6=01 6=005 0=0.01
{ =126 0.32 0.22 0.08 0.37 0.22 0.12
=252 0.40 0.36 0.19 0.49 0.42 0.26

independence test conditional coverage test
a=005|6d=01 06=005 6=001|6=01 06=0.05 ¢6=0.01
{ =126 0.28 0.20 0.06 0.28 0.21 0.12
=252 0.37 0.27 0.17 0.36 0.27 0.22
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Summary

Based on GDFM techniques, we are able to construct nonparametric and
model-free quantile-related one-step ahead prediction intervals for returns
incorporating dynamic information about volatilities while escaping the
curse of dimensionality.

But there's more in the two-step approach than interval predition!
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Analyzing the Market Volatility Shocks

At the end of Step 1 of our two-step factor model approach, we had disentangled

common and idiosyncratic shocks e;; and vj;, estimated by widehate;; and Vj;,
respectively.

For simplicity, let us drop hats whenever we can.

@ The ej;'s are the residuals we need for an analysis of the volatility of the

level-common components. They are a reduced-rank process (dimension n,
driven by g-dimensional noise).

@ The v;;'s are the residuals we need for an analysis of the volatility of the
level-idiosyncratic components.

Instead of aggregating them into s := e; + vir (Sit := € + Vir)—which was fine

for prediction purpose, let us keep both of them, and define, as proposed by Engle
and Marcucci (2006),

com .__ 2 idio . __ 2
hig™ = log € hif® := log vj.
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com . __ 2 idio . __ 2
hE™ = loge; and hy° = log v

... two panels of volatility proxies, thus, impacted by, and hence containing
information on, the same market volatility shocks we are inerested in.

Those two (large) panels of residuals have to be analyzed jointly, as one 2n x T
panel with two n x T subpanels.
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Panels with block structure have been described and studied in Hallin and Liska
(Journal of Econometrics 2011).

For ease of presentation, consider the following example of a panel composed of
two blocks: ng=96 French economic series {Xf} and ng=114 German ones
{Xg}; the joint panel thus has (n= 210) series.
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Subpanel spectral eigenvalues (two subpanels or
blocks)

Behavior of 10 largest dynamic eigenvalues (averaged over frequencies):

(a) France; (b) Germany; (c) France and Germany.

panel Y panel Z panel X
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Three distinct analyses can be conducted, based on

@ two marginal factor models, with gr and gc common shocks, respectively

Xi = xh+&h
G G G
Xii = Xjit5§

@ a global factor model, with g common shocks
XE = X+
Xi = X+
This provides three decompositions of the Hilbert space H spanned by the panel

into
@ an F-common space H} and an F-idiosyncratic space H% := (H)X)*

@ a G-common space H and a G-idiosyncratic space H := (HX)*

@ an FG-common space . and an FG-idiosyncratic space ’HFEG = (’H%G)J‘
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Clearly, Hf C Hf, and HFE C Hf so that max(qr, g¢) < 9 < gr + qc.-

We thus have two decompositions into four mutually orthogonal components:
X

X,-f = @F;it + ’(]’F;it + <F;it +5,’-;G ) i€ Na teZ

F F
Xig &

and
GF
Xjt

Xg = dcje + Yo + Coje +€7 . JEN, teZ.

G G
X; 13
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oF.i is F- and G-common: strongly common
YF.ir is F-common but G-idiosyncratic: weakly F-common
Cr.ir is F-idiosyncratic but G-common: weakly F-idiosyncratic

FG

1% is FG-idiosyncratic: strongly idiosyncratic

¢a:it is F- and G-common: strongly common
gt is G-common but F-idiosyncratic: weakly G-common
Cc:it is G-idiosyncratic but F-common: weakly G-idiosyncratic

¢SF is FG-idiosyncratic: strongly idiosyncratic
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Statistical analysis:
identification of g, g¢ and g via the Hallin-Liska (JASA 2007) method

consistent reconstruction of ¢r.;t, ¥r.ir, etc. and estimation of their
contributions to the total sum of squares as in Hallin and Liska (Journal of
Econometrics 2011)
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In our case,

the role of France is played by the {h5s™}'s (originating from the
level-common shocks),

the role of Germany by the {h¥*}'s originating from the level-idiosyncratic

shocks).

The strongly common, weakly common and weakly idiosyncratic components all
qualify as "market-driven volatilities".

In the S&P100 case below, g = g=™ = g = 1 is identified. Then, the
decomposition only has strongly common components and strongly idiosyncratic
ones. Market volatility is univariate (one shock).

We illustrate the method by an application to the S&P100 series : n = 90 series

[some stocks were not traded, and were removed from the analysis] of daily
log-returns observed between January 2000 and September 2013 (T =3457).
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Step 1. A factor model analysis of the levels Y}

e a number g = 1 of dynamic factors is identified via the Hallin-Liska (JASA
2007) method

e the one-sided method of Forni-Hallin-Lippi-Zaffaroni (Journal of Econometrics
2015) yields (a reconstruction of) the level-common components Xj;, their shocks
ejt, and the level-idiosyncratic Z;;

e univariate AR models (orders selected via AIC or BIC) are fitted to the Z's,
yielding residuals v;;

o the volatility proxies {h$™ := log e2} are computed from the level-common
shocks e;;

e the volatility proxies {hid® := log v2} are computed from the level-idiosyncratic
shocks v;;
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Step 1.

Estimated market shocks U; on returns, period 2000-2013.

- 1 1 1 1 1 1 1
1%0 01 02 03 04 05 06 07 08 09 10 11 12 13

Note
e the dot—com bubble, the Enron (late 2001) and Worldcom (mid—2002) scandals

e the 2003 Iraq war
e the Great 2008-2009 Financial crisis starting with Lehman Brothers bankruptcy

(September 2008);
e the 2010-2012 euro sovereign bond crisis.
The largest shocks over the period, by far, are those related with the 2008-2009

financial crisis.
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Step 1.

One can compute the ratios between the sum of the (empirical) variances of the
estimated common components X/ and the sum of the (empirical) variances of
the observed returns:

2 X (X2
T RY market i= == = S~ 0.36
and also >im1 2oi=1(Yie)
T T\2 n T)2
X X
2 — Zt:l( it ) i = 17 ...,n and Rat.market = ZIzl( lf‘ ) t = 17 R T

Ry :
Y;.market E;r:l(yit)z )

0.2 0.4 0.6 0.8 1

Histogram for the proportions R)Z,_ market of variance explained by the market shocks to returns across the panel.
i
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%0 01 02 03 04 05 06 07 08 09 10 11 12 13

time

2
Y; .market

the market shocks to returns at time t.

Time series of the proportions R of variance explained by
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Step 2. A 2-block factor model analysis of the volatility proxies {hs™} and {hide}

Evidence of factor structure in the volatility proxy panels.

Level-common Level-idiosyncratic Joint
1 25
08 2
3
0.6 15
2
0.4 1
1
02 ___—orea 05
ﬁ L
Og 0 0
50 ’ZO 90 50 IZO %0 140 160 180
j j

71/
Ten largest dynamic eigenvalues, averaged over frequencies, computed for panels of increasing sizes:

45 < n; < n = 90 for the level-common and level-idiosyncratic volatility panels, and 135 < n; < 2n = 180
for the joint volatility panel.
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Step 2.
A 2-block factor model analysis of the volatility proxies {h5™} and {hif=}

e the following numbers of dynamic factors are identified via the Hallin-Liska
(JASA 2007) method: g=™ =1, g =1, g = 1.

e This implies that a unique volatility-strongly-common shock is driving both
the level-common h$™'s and the level-idiosyncratic hife’s: no weakly common nor
weakly idiosyncratic components here, which greatly simplifies the analysis (a
standard FHLZ approach to the 2n-dimensional panel is sufficient)

e That common shock thus qualifies as the market volatility shock, impacting
both the level-common and level-idiosyncratic components of the S&P100 panel,
with different strengths, though
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0 01 02 03 04 05 06 07 08 09 10 11 12 13

time

Estimated market shock on volatilities, period 2000-2013.

e 01 the dotcom bubble

e 03 lraq war

e 09 is the Great Financial Crisis (which started in 2008)
e 11-12 is the Eurocrisis
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The overall contribution of market shocks to the variances of the volatility proxies

{hg™} and {hi¢*} can be evaluated by means of the ratios

R et 1= Zt 1 ZI 1( com; ’f) ~ 0.60
Zt 121 1(hc°m)

and

2 et (= Zt 1 i (Butesie)?
idio.market Zt lzl 1( -duo)

For each individual stock i, a measure of the same impact is

0.17

T 2
RI%“’“.market = Zt 1( c:r:m’tz and Rh'd"' market = Zt 1( Id,:o’t)
> (g 3y (Hide)?

while their evolution through time is captured by

Rﬁmm : M nd R2 o 27:1(¢idio;it)2

= a = = a5
.market Z,’-]:l(hff'")Q h-d:o market Z?Zl(hﬁlo)z )

t=1,...
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level-common volatility level-idiosyncratic volatility

% o0z 04 06 08 1 % 02 04 06 08 1

Histograms for the proportions of variances explained by the market volatility shocks across the panel: R;‘;com market
gom.

left) and R2 . ight).
(left) an ridio market (right)

55/62



%0 01 02 03 04 05 06 07 08 » 9 10 11 12 13
time

Time series of the estimated proportions R2 (black) and R?

oM _market hitdi°.market (red) of variances explained by the

market volatility shocks.
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The transfer or impulse—response functions describing the dynamic loading, by the
volatility proxies, of the market volatility shocks. For each stock 7, those functions
take the form of scalar filters (one for hs™, another one for hig**), plotted
sequences of coefficients associated with the various lags.

level-common volatility level-idiosyncratic volatility

2

] 1.5

1 1

1 0.5},
_

% 5 10 15 20 % 5 10 15 20
lag lag

Median, maximum, and minimum of the distribution of impulse—response functions of volatilities to a one—standard-
deviation market volatility shock, that is, the sequence of loading coefficients divided by the standard error of the
shocks, for level-common (left) and level-idiosyncratic (right) volatilities, respectively.
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Finance Technology

AAPL
05 AMZN
——HPQ
04 IBM
0.3 MSFT
0.2
0.1 %
e ———
0 /
0 5 10 15 20 0 5 10 15 20
lag ]ag

Impulse—response functions of volatilities to a one—standard-deviation market volatility shock, that is, the sequence
of loading coefficients divided by the standard error of the shocks, for level-idiosyncratic volatilities of selected stocks
from the Financial (left) and Technology (right) sectors, respectively.
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Finally, to conclude, we turn to the analysis, for a few selected stocks, of the
market-driven volatilities, which we define (hats omitted) as

Xe2;it = exp(¢com;it+/_ﬁ°m)’ XVz;it = exp(¢idi°§it+/_7iidi°)? = ]'3 Loy N, t= 17 e

where hee™ and hi#* stand for empirical means.

level-common volatility level-idiosyncratic volatility
5 —— 5 —— 1
4 4 f
3 3 1
2 2 1
1 1 )
e P N S
W of 02 03 04 05 06 07 08 09 10 11 12 13 0 of 02 05 04 05 06 07 08 09 10 11 12 13
time time

Kernel-smoothed cross—sectional averages of market volatilities. The bandwidth used corresponds to 3 weeks of

trading (15 days).
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Market volatilities — Financial sector.

level-common volatility

©mwao0dD

P -

level-idiosyncratic volatility

B¢ ©1 o0z 03 04 05 08 o7 08 05 10 11 12 13
®6 o1 oz o3 o0s o5 o8 o7 o8 05 10 11 B B
EWW¢ A At

R i i e I i
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Market volatilities — Technology sector.

level-common volatility level-idiosyncratic volatility
E TR "
e o1 02 03 o4 05 06 07 ©O8 08 10 11 12 13
ura
N N R
R %6 o ©2 o3 o4 05 06 07 08 09 o B B
Pl i B A L N e

61/62



Conclusions and perspectives

e Dynamic factor methods can be applied to volatilities in high-dimensional time
series (in large panels of stocks)

e contrary to most existing methods for the analysis of volatility, they are fully
nonparametric and model-free: curse of dimensionality turns into a blessing!

e the decompositions between “level-common” and “level-idiosyncratic” on one
hand, between “volatility-common” and “volatility-idiosyncratic” in general do not
coincide: common volatility shocks quite significantly do affect level-idiosyncratic
components as well as the level-common one;

e dynamic portfolio optimization should take into account the market impact on
the volatilities of the level-idiosyncratic components a well as their impact on the
level-common ones; in general, the risk associated with level-idiosyncratic
components cannot be fully diversified away, while the risk associated with
level-common partially can

This approach opens the door to volatility prediction and portfolio
optimization without curse of dimensionality nor oversimplified modeling in
large panels (high-dimensional time series) of stock returns.
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